Browse Source

Added scripts

master
D45Hub 3 months ago
commit
a852defa17
  1. 100
      analysis_helper.py
  2. 60
      gen_completion_time_boxplot.py
  3. 66
      gen_merged_sensor_data.py
  4. 96
      gen_merged_sensor_data_and_distance_plot.py
  5. 25
      text_merger.py

100
analysis_helper.py

@ -0,0 +1,100 @@
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
import scipy.stats as stats
from scipy.stats import f_oneway, friedmanchisquare, mannwhitneyu, ranksums
import numpy as np
import pingouin as pg
# SUS
df = pd.read_csv('QuestionnaireDataSUS.csv')
df['TotalIMIScore'] = ((df['Q1'] - 1) + (5 - df['Q2']) + (df['Q3'] - 1) + (5 - df['Q4']) + (df['Q5'] - 1) + (5 - df['Q6']) + (df['Q7'] - 1) + (5 - df['Q8']) + (df['Q9'] - 1) + (5 - df['Q10'])) * 2.5
# IMI
#df = pd.read_csv('QuestionnaireDataIMI.csv')
#df['TotalIMIScore'] = (df['Q1'] + df['Q2'] + (8 - df['Q3']) + (8 - df['Q4']) + df['Q5'] + df['Q6'] + df['Q7']) / 7.0
grouped = df.groupby('WebpageID').agg(
mean_IMIScore=('TotalIMIScore', 'mean'),
std_IMIScore=('TotalIMIScore', 'std'),
count=('TotalIMIScore', 'count')
)
grouped['variance_IMIScore'] = grouped['std_IMIScore'] ** 2
anova_data = [group['TotalIMIScore'].values for name, group in df.groupby('WebpageID')]
anova_result = f_oneway(*anova_data)
print(f"ANOVA Result: F-statistic = {anova_result.statistic}, p-value = {anova_result.pvalue}")
friedman_data = df.pivot(index='ParticipantID', columns='WebpageID', values='TotalIMIScore').dropna()
spher, W, chisq, dof, pval = pg.sphericity(data=df, within='WebpageID', dv='TotalIMIScore', subject='ParticipantID')
gg = pg.epsilon(data=df, within='WebpageID', dv='TotalIMIScore', subject='ParticipantID', correction='gg')
print(gg)
friedman_result = friedmanchisquare(*[friedman_data[col] for col in friedman_data])
print(f"Friedman Test Result: Chi-square statistic = {friedman_result.statistic}, p-value = {friedman_result.pvalue}")
model = ols('TotalIMIScore ~ C(WebpageID)', data=df).fit()
anova_table = sm.stats.anova_lm(model, typ=2)
print(anova_table)
print(stats.shapiro(anova_data[0]))
print(stats.shapiro(anova_data[1]))
print(stats.shapiro(anova_data[2]))
print(stats.shapiro(anova_data[3]))
print(stats.shapiro(anova_data[4]))
print(stats.shapiro(anova_data[5]))
print(stats.levene(*anova_data))
print(spher, round(W, 5), round(chisq, 3), dof, round(pval, 3))
group_1 = df[df['WebpageID'] == 1]['TotalIMIScore']
group_2 = df[df['WebpageID'] == 2]['TotalIMIScore']
group_3 = df[df['WebpageID'] == 3]['TotalIMIScore']
group_4 = df[df['WebpageID'] == 4]['TotalIMIScore']
group_5 = df[df['WebpageID'] == 5]['TotalIMIScore']
group_6 = df[df['WebpageID'] == 6]['TotalIMIScore']
def mann_whitney_test(group_a, group_b):
u_statistic, p_value = mannwhitneyu(group_a, group_b)
n1 = len(group_a)
n2 = len(group_b)
mu_u = n1 * n2 / 2
sigma_u = np.sqrt(n1 * n2 * (n1 + n2 + 1) / 12)
z_value = (u_statistic - mu_u) / sigma_u
effect_size_r = z_value / np.sqrt(n1 + n2)
return u_statistic, p_value, z_value, effect_size_r
def wilcoxon_rank_sum_test(group_a, group_b):
rank_sum_statistic, p_value = ranksums(group_a, group_b)
effect_size_r = rank_sum_statistic / np.sqrt(len(group_a) + len(group_b))
return rank_sum_statistic, p_value, effect_size_r
comparisons = [
("2 vs 5", group_2, group_5),
("2 vs 3", group_2, group_3),
("3 vs 5", group_3, group_5),
("1 vs 6", group_1, group_6),
("4 vs 6", group_4, group_6),
("1 vs 4", group_1, group_4),
]
results = []
res = pg.rm_anova(data=df, within='WebpageID', dv='TotalIMIScore', subject='ParticipantID', detailed=True)
print(res)
for label, group_a, group_b in comparisons:
mw_u_statistic, mw_p_value, mw_z_value, mw_effect_size_r = mann_whitney_test(group_a, group_b)
ws_rank_sum_statistic, ws_p_value, ws_effect_size_r = wilcoxon_rank_sum_test(group_a, group_b)
results.append({
'Comparison': label,
'Mann-Whitney U Statistic': mw_u_statistic,
'Mann-Whitney p-value': mw_p_value,
'Mann-Whitney Z-value': mw_z_value,
'Mann-Whitney Effect Size (r)': mw_effect_size_r,
'Wilcoxon Rank-Sum Statistic': ws_rank_sum_statistic,
'Wilcoxon p-value': ws_p_value,
'Wilcoxon Effect Size (r)': ws_effect_size_r
})
results_df = pd.DataFrame(results)
print(results_df)

60
gen_completion_time_boxplot.py

@ -0,0 +1,60 @@
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
data_dir = './'
all_data = []
all_tap_logs = []
for filename in os.listdir(data_dir):
if filename.endswith('.json'):
file_path = os.path.join(data_dir, filename)
with open(file_path, encoding='utf-8') as file:
data = json.load(file)
tap_logs = data.get('sensorLog', {}).get('tapLog', [])
for entry in tap_logs:
entry['participant_id'] = filename
all_tap_logs.append(entry)
df = pd.DataFrame(all_tap_logs)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['path'] = df['url'].apply(lambda x: x.split('://')[-1].split('/', 1)[-1])
# Mapping with tour_operators being mergeable to study page 2. :)
path_to_label = {
"study-page-1": "Study Page 1",
"study-page-2": "Study Page 2",
"study-page-3": "Study Page 3",
"study-page-4": "Study Page 4",
"study-page-5": "Study Page 5",
"study-page-6": "Study Page 6",
"tour_operators": "Study Page 2"
}
df['label'] = df['path'].map(path_to_label)
completion_times = df.groupby(['participant_id', 'label'])['timestamp'].agg(['min', 'max']).reset_index()
completion_times['completion_time'] = (completion_times['max'] - completion_times['min']).dt.total_seconds()
# Filter out technical outliers
comp_query = 'completion_time < 500'
average_completion_times = completion_times.query(comp_query).groupby('label')['completion_time'].mean().reset_index()
c_times_by_page = completion_times.query(comp_query).groupby('label', group_keys=True)[['completion_time']].apply(lambda x: x)
c_times_list = [c_times_by_page.groupby('label').get_group('Study Page 1')['completion_time'], c_times_by_page.groupby('label').get_group('Study Page 2')['completion_time'], c_times_by_page.groupby('label').get_group('Study Page 3')['completion_time'], c_times_by_page.groupby('label').get_group('Study Page 4')['completion_time'], c_times_by_page.groupby('label').get_group('Study Page 5')['completion_time'], c_times_by_page.groupby('label').get_group('Study Page 6')['completion_time']]
# Draw plots
plt.figure(figsize=(10, 6))
#plt.bar(average_completion_times['label'], average_completion_times['completion_time'], color='skyblue')
plt.boxplot(c_times_list)
plt.xlabel('Page')
plt.xticks([1,2,3,4,5,6], ["1 - BudgetBird", "2 - Hotel", "3 - UVV", "4 - Iceland", "5 - Rental", "6 - QuickDeliver"])
plt.ylabel('Average Task Completion Time (s)')
plt.title('Average Task Completion Time by Page')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()

66
gen_merged_sensor_data.py

@ -0,0 +1,66 @@
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data_dir = './'
all_data = []
all_tap_logs = []
for filename in os.listdir(data_dir):
if filename.endswith('.json'):
file_path = os.path.join(data_dir, filename)
with open(file_path, encoding='utf-8') as file:
data = json.load(file)
tap_logs = data.get('sensorLog', {}).get('tapLog', [])
for entry in tap_logs:
entry['participant_id'] = filename
all_tap_logs.append(entry)
df = pd.DataFrame(all_tap_logs)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['path'] = df['url'].apply(lambda x: x.split('://')[-1].split('/', 1)[-1])
# Mapping with tour_operators being mergeable to study page 2. :)
path_to_label = {
"study-page-1": "Study Page 1",
"study-page-2": "Study Page 2",
"study-page-3": "Study Page 3",
"study-page-4": "Study Page 4",
"study-page-5": "Study Page 5",
"study-page-6": "Study Page 6",
#"tour_operators": "Study Page 2"
}
df['label'] = df['path'].map(path_to_label)
grouped = df.groupby('label')
# JSON list structure
def generate_heatmap_data(group):
heatmap_data = group[['x', 'y']].copy()
heatmap_data['radius'] = 40
heatmap_data['value'] = 5
heatmap_data['x'] = heatmap_data['x'].astype(str)
heatmap_data['y'] = heatmap_data['y'].astype(str)
heatmap_data_list = heatmap_data.to_dict(orient='records')
min_value = 1
max_value = 9999
return {
"min": min_value,
"max": max_value,
"data": heatmap_data_list
}
for label, group in grouped:
heatmap_data = generate_heatmap_data(group.apply(lambda x: round(x)))
json_filename = f"{label.replace(' ', '_').lower()}.json"
with open(json_filename, 'w', encoding='utf-8') as json_file:
json.dump(heatmap_data, json_file, indent=4)
print(f"Generated {json_filename} with {len(heatmap_data)} records.")

96
gen_merged_sensor_data_and_distance_plot.py

@ -0,0 +1,96 @@
import os
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data_dir = './'
all_data = []
all_tap_logs = []
for filename in os.listdir(data_dir):
if filename.endswith('.json'):
file_path = os.path.join(data_dir, filename)
with open(file_path, encoding='utf-8') as file:
data = json.load(file)
tap_logs = data.get('sensorLog', {}).get('tapLog', [])
for entry in tap_logs:
entry['participant_id'] = filename
all_tap_logs.append(entry)
df = pd.DataFrame(all_tap_logs)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['path'] = df['url'].apply(lambda x: x.split('://')[-1].split('/', 1)[-1])
# Mapping with tour_operators being mergeable to study page 2. :)
path_to_label = {
"study-page-1": "Study Page 1",
"study-page-2": "Study Page 2",
"study-page-3": "Study Page 3",
"study-page-4": "Study Page 4",
"study-page-5": "Study Page 5",
"study-page-6": "Study Page 6",
"tour_operators": "Study Page 2"
}
df['label'] = df['path'].map(path_to_label)
def calculate_distances(group):
group = group.sort_values(by='timestamp')
x_diff = group['x'].diff().fillna(0)
y_diff = group['y'].diff().fillna(0)
distances = np.sqrt(x_diff**2 + y_diff**2)
total_distance = distances.sum()
return total_distance
grouped = df.groupby(['participant_id', 'label'])
distance_data = grouped.apply(calculate_distances).reset_index()
distance_data.columns = ['participant_id', 'label', 'total_distance']
def generate_heatmap_data(group):
heatmap_data = group[['x', 'y']].copy()
heatmap_data['radius'] = 40
heatmap_data['value'] = 5
heatmap_data['x'] = heatmap_data['x'].astype(str)
heatmap_data['y'] = heatmap_data['y'].astype(str)
heatmap_data_list = heatmap_data.to_dict(orient='records')
min_value = 1
max_value = 999
return {
"min": min_value,
"max": max_value,
"data": heatmap_data_list
}
for label, group in df.groupby('label'):
heatmap_data = generate_heatmap_data(group)
json_filename = f"{label.replace(' ', '_').lower()}.json"
with open(json_filename, 'w', encoding='utf-8') as json_file:
json.dump(heatmap_data, json_file, indent=4)
print(f"Generated {json_filename} with {len(heatmap_data['data'])} records.")
distance_data.to_csv('distance_data.csv', index=False)
print("Distance data saved to distance_data.csv")
# Filter out technical outliers...
comp_query = 'total_distance < 15000'
# Boxplot drawing
plt.figure(figsize=(12, 6))
sns.boxplot(x='label', y='total_distance', data=distance_data.query(comp_query).apply(lambda x: x))
plt.xticks(rotation=45)
plt.xlabel('Study Page')
plt.xticks([0,1,2,3,4,5], ["1 - BudgetBird", "2 - Hotel", "3 - UVV", "4 - Iceland", "5 - Rental", "6 - QuickDeliver"])
plt.ylabel('Total Distance Traveled (pixels)')
plt.title('Total Distance Traveled per Study Page')
plt.tight_layout()
plt.savefig('distance_boxplot.png')
plt.show()

25
text_merger.py

@ -0,0 +1,25 @@
import os
main_directory = './'
participant_dirs = range(1, 34)
output_file = os.path.join(main_directory, 'merged_notes.txt')
with open(output_file, 'w') as outfile:
for participant in participant_dirs:
participant_dir = os.path.join(main_directory, str(participant))
if os.path.exists(participant_dir):
for filename in os.listdir(participant_dir):
if filename.endswith('.txt'):
file_path = os.path.join(participant_dir, filename)
outfile.write(f"\n\n--- Participant {participant} ---\n\n")
with open(file_path, 'r') as infile:
outfile.write(infile.read())
else:
print(f"Directory {participant_dir} does not exist.")
print("Merging complete. Check the merged_notes.txt file in the main directory.")
Loading…
Cancel
Save